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Abstract—This study compared three different signal-processing
principles (eight basic algorithms)—transposing, modulating, 
and filtering—to find the principle(s)/algorithm(s) that resulted 
in the best tactile identification of environmental sounds. The 
subjects were 19 volunteers (9 female/10 male) who were 
between 18 and 50 years old and profoundly hearing impaired. 
We processed sounds produced by 45 representative environ-
mental events with the different algorithms and presented them 
to subjects as tactile stimuli using a wide-band stationary 
vibrator. We compared eight algorithms based on the three 
principles (one unprocessed, as reference). The subjects identi-
fied the stimuli by choosing among 10 alternatives drawn from 
the 45 events. We found that algorithm and subject were signifi-
cant factors affecting the results (repeated measures analysis of 
variance, p < 0.001). We also found large differences between 
individuals regarding which algorithm was best. The test-retest 
variability was small (mean +/– 95% confidence interval = 8 +/–
3 percentage units), and no correlation was noted between 
identification score and individual vibratory thresholds. One 
transposing algorithm and two modulating algorithms led to 
significantly better results than did the unprocessed signals
(p < 0.05). Thus, the two principles of transposing and modu-
lating were appropriate, whereas filtering was unsuccessful. In 
future work, the two transposing algorithms and the modulat-
ing algorithm will be used in tests with a portable vibrator for 
people with dual sensory impairment (hearing and vision).

Key words: deaf, deafblind, environmental sound, identifica-
tion, modulating, monitoring, perception, tactile, transposing, 
vibration.

INTRODUCTION

For humans, vision and hearing are two highly 
important senses for acquiring information about the sur-
rounding world. When one of these senses is severely 
impaired (the person is blind or profoundly hearing 
impaired), the other sense compensates to a great extent. 
Consequently, people with dual sensory impairment 
(hearing and vision) receive very limited information 
about events in their surroundings. They cannot detect 
someone approaching them until they feel vibrations 
from footsteps, smell the person’s perfume, perceive the 

Abbreviations: AM = amplitude modulation (algorithm), 
AMFM = amplitude and frequency modulation (algorithm), 
AMMC = amplitude modulation with multiple channels (algo-
rithm), EQ = equalizing (algorithm), FA = fast adapting, ICC = 
intraclass correlation coefficient, NP = no processing (algo-
rithm), RM-ANOVA = repeated measures analysis of variance, 
SA = slowly adapting, SEM = standard error of the mean, TR = 
transposing frequency range (algorithm), TR1/3 = transferring 
sum of complex frequency components within every 1/3 
octave (algorithm), TRHA = transposing frequency compo-
nents with highest amplitude (algorithm). 
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person’s body heat or breath at a short distance, or finally, 
feel the person touching them. This lack of information 
about environmental events makes it difficult for people 
with dual sensory impairment to know what is happening 
around them; it creates difficulties in planning and may 
also cause fear or anxiousness [1].

Borg at al. interviewed 19 people with dual sensory 
impairment about their feelings on the shortage of infor-
mation about events in their surroundings and their expe-
riences and strategies [1]. They found that people with 
dual sensory impairment regard this lack of environmen-
tal information as a significant problem and that they 
compensate for their impaired vision and hearing using 
the cutaneous senses (e.g., vibratory sense) to perceive 
the vibrations (sounds) produced by events. They also 
receive information through olfaction and are able to 
sense temperature and drafts (streams of air). The partici-
pants in Borg et al.’s study showed an interest in a porta-
ble aid that could help them monitor the environment.

Transformation of visual information into tactile or 
acoustic information has been attempted in several stud-
ies aimed at improving the environmental perception of 
blind people [2–6]. Johnson and Higgins developed a 
wearable device that converts the visual information 
picked up by a Webcam into tactile signals, which are 
then presented by 14 vibrating motors spaced on a flexi-
ble belt [5]. The results showed that the device was use-
ful for object detection. Bach-y-Rita et al. used a 7 × 7-
point electrotactile array, placed on the tongue, to study 
the form perception of objects shaped as circles, squares, 
and vertex-up equilateral triangles of different sizes [3]. 
Subjects identified 79.8 percent of the objects correctly. 
In further studies, Bach-y-Rita et al. developed a tactile 
vision system in which the optical images picked up by a 
head-mounted television camera were transduced into 
vibratory or direct electrical stimulation [2–4]. The stimu-
li were displayed on a vibrotactile array, which could be 
sensed by the skin, a finger, or the tongue. After the blind 
subjects were adequately trained, they could identify 
objects in space. In the present study, we focused on 
translating sounds produced by events into vibrations that 
could be presented to the fingers and palm of the hand.

The possibility of receiving speech information 
through the vibratory sense—“tactile transfer of 
speech”—has been studied extensively in people with 
profound hearing impairment [7]. The speechreading of 
adults with postlingual profound hearing impairment 
(persons who became hearing impaired after having 

established their oral language) improved when they 
combined speechreading with a tactile speech signal pre-
sented through a vibratory aid. The Sentiphone, 
MiniVib4, TAM, and Tactaid II and VII are examples of 
aids that use tactile transfer of speech information for 
profoundly hearing impaired persons who receive insig-
nificant or no benefit from conventional hearing aids [8–
10]. Traunmüller showed that the Sentiphone decreased 
word errors from 24 percent for speechreading alone to 
3.3 percent for speechreading combined with the vibra-
tory aid [10]. In the MiniVib4, a 220 Hz sine wave is 
amplitude-modulated by the envelope of the input signal 
(extracted by low-pass filtering at 30 Hz) in the fre-
quency range 500 to 2,300 Hz [11]. Users of this tactile 
aid experienced improved speechreading (MiniVib4; 
Stockholm, Sweden; http://www.specialinstrument.se/), 
exhibited better control of their own voice, and became 
aware of sounds in their surroundings [12]. Spens and 
Plant showed that subjects who were aided with a single-
channel tactile aid rated their disability as less severe 
than when unaided because they could sense environ-
mental sounds better [13].

Plant and Spens studied the speech perception skills 
of a Swedish man with postlingual profound hearing 
impairment in two languages (Swedish and English) with 
and without vibrotactile support [7]. The tested subject 
used the “tactiling” method [14], in which he detected the 
vibrations that accompany speech by placing his thumb 
directly on the speaker’s throat as a supplement to 
speechreading. The aid consisted of a throat microphone, 
amplifier, and a handheld bone vibrator. The results 
showed that the tracking rate in Swedish increased from 
around 40 words per minute with speechreading alone to 
60 to 65 words per minute with speechreading plus the 
tactile aid. The subject also showed improved tracking 
rates for English materials, thus, for a nonnative lan-
guage. Tactile cues led to improvements of around 40 
percent over speechreading alone [15].

Today, vibrotactile aids are also used to inform the 
person with profound hearing impairment or dual sensory 
impairment about a limited number of selected events. 
For example, the vibratory aid Lynx Tactum (GN 
ReSound ALD Division; Stockholm, Sweden) is a watch 
with a vibrator that directs the user’s attention to up to 
seven different events, e.g., baby crying, telephone signal,
door signal, fire alarm, awakening alarm (http://
www.gnresound-ald.com/Lynx.pdf).

http://www.specialinstrument.se/
http://www.gnresound-ald.com/Lynx/Lynx%20Tactum%20Manual%20Eng%20Ned%20Nor%20Swe%202006-12.pdf
http://www.gnresound-ald.com/Lynx/Lynx%20Tactum%20Manual%20Eng%20Ned%20Nor%20Swe%202006-12.pdf
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Some people with dual sensory impairment use 
vibrotactile aids for speech perception, and promising 
results have been obtained [16]. However, these prelimi-
nary studies have not been published.

Currently, cochlear implantation is also an expanding 
technique for those with dual sensory impairment. How-
ever, it requires surgery and functioning auditory nerves 
and is considerably more expensive than vibrotactile 
aids. Few adults who were born with profound hearing 
impairment or dual sensory impairment and use sign lan-
guage are interested in obtaining a cochlear implant 
[7,17] because they cannot develop oral language (they 
are too old) and because, as a rule, their sign language 
communication is good. Another reason is that they risk 
encountering a cultural collision: the hearing culture ver-
sus the deaf culture [17–19].

Use of the tactile sense for perceiving sound, e.g., for 
speech communication, is hindered by the narrow band-
width of the tactile sense and the physical properties of 
the vibrators. Four different types of mechanoreceptors 
are present in the skin, and they sense different aspects of 
mechanical energy applied to the skin. Fast adapting (FA) 
mechanoreceptors, which are divided into two different 
types (FA I and FA II), are sensitive to changes in the 
skin such as tangential forces (friction) and orthogonal 
vibrations. FA I receptors sense vibrations below 50 Hz, 
and FA II receptors are sensitive to vibrations above 50 
Hz. Slowly adapting (SA) mechanoreceptors are divided 
into two types (SA I and SA II) and sense pressure. SA I 
receptors register pressure near the skin’s surface and in a 
small field, whereas SA II receptors register pressure 
deeper in the skin and in a large field [20].

The vibration threshold of the skin primarily depends 
on receptor density. It is affected by several factors, for 
example, body location, stimulus frequency and duration, 
temperature, sex, age, and hairiness. For example, the 
distal pad of the middle finger has a lower tactile detec-
tion threshold than does the thenar eminence and the 
volar forearm and women and adults have higher vibro-
tactile detection thresholds than do men and children, 
respectively [8].

The vibration threshold also varies depending on the 
properties of the vibrator, for example, size of the contact 
area, size of the surrounding area, size of the gap between 
the contact area and the surrounding area, pressure (probe 
force), skin indentation, and measurement method [8,12, 
21–24]. For example, the vibrotactile detection threshold 
at 200 Hz, with a contact size of 0.28 cm2 at the thenar 

eminence, is –8 dB related to 1 m, while the corre-
sponding value is –18 dB at the distal pad of the middle 
finger and +18 dB on the forearm [25].

The detection threshold is frequency dependent and 
is lowest for 250 Hz at the thenar eminence [22]. Sensi-
tivity increases with the duration of the signal. The 
dynamic range in which the skin can detect vibrations, 
the range between the lowest sensitivity level (detection 
level) and the highest sensitivity level (unpleasant or 
painful level), is 55 dB (compared with about 113 dB for 
hearing). The skin is more sensitive to vibrations at tem-
peratures around 30 C than 15 C. Contact force (pres-
sure) affects high frequencies such that larger contact 
force leads to lower thresholds [24].

Further, the skin has limitations in frequency dis-
crimination, separation of nonsimultaneous signals (fre-
quency difference [f  ]  30%), and intensity discrimination
(intensity difference [I ]  0.7 dB), which again depend 
on body location [8]. These values can be compared with 
f  0.3 percent and I  0.3 dB (depending on the fre-
quency and intensity level of the stimulus), respectively, 
for the auditory system [26].

The skin also has poorer frequency resolution and 
ability to separate simultaneous signals than the auditory 
system. The frequency resolution of the auditory system 
is 10 percent. For the skin to resolve two simultaneous 
signals with different frequencies, the frequencies must 
be in the sensitivity range of the different mechanorecep-
tors; i.e., one must be below about 50 Hz and the other 
must be above about 50 Hz [27–28]. Differentiating fre-
quency resolution from frequency discrimination is 
important, as sound coding depends on both.

The skin and auditory system also have different 
temporal resolution (gap detection) thresholds depending 
on, for example, the stimulus (sinusoids or noise) and age 
of the subject. The gap detection of the auditory system is 
approximately 3 ms, while the gap detection of the skin is 
approximately 10 ms (100 Hz) for sinusoids. The gap 
detection threshold of the skin is lower for bursts of sinu-
soids than for bursts of band-limited noise. The maximal 
vibratory sensitivity for amplitude modulations (using 
sinusoids as carriers) occurs at modulation frequencies of 
20 to 40 Hz [8,29–30].

For cochlear implants, multiple channels are gener-
ally accepted as having a clear advantage in signaling the 
processed sounds. Furthermore, no major disadvantages 
exist, except regarding financial concerns and availability. 
On the other hand, tactile aids with several vibrators are 
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cumbersome, result in increased demands on the physical 
design (bigger and with additional cables), and require a 
larger electrical power supply. Regarding these concerns 
with multiple vibrators, our focus is on developing a single-
channel device that is easy to handle, has low battery costs,
and is emotionally and socially acceptable to the user.

In conclusion, presenting sounds as vibrations has its 
limitations and the sounds must be processed to fit the 
properties of the receptors at the location on the body 
where the vibrations will be presented.

The general aim of our ongoing project is to develop 
a vibrotactile aid that will help people with dual sensory 
impairment monitor sounds produced by environmental 
events. The aided person is expected to interpret the 
vibrations and obtain essential information about her or 
his surroundings that can be given meaningful interpreta-
tions with the help of additional contextual information.

In a previous study, six algorithms developed on the 
basis of two principles (transposition and modulation) 
were used to process environmental sounds and tested 
using the hearing sense [31]. In the present study, the six 
basic algorithms (three transposing and three modulat-
ing) from the previous study (with some modifications) 
and seven additional algorithms were used to process the 
same environmental sounds and tested using the vibra-
tory sense. The seven additional algorithms consisted of 
five of the basic algorithms adapted to the vibratory 
thresholds of the skin, one filtering (based on filtration 
principle), and one with no processing (NP), i.e., original 
sounds used as a reference.

PURPOSE

The specific purpose of the present study was to 
develop/modify and test signal-processing algorithms 
based on three different principles—transposing, modu-
lating, and filtering—using a stationary wide-band vibra-
tor and to choose the principle(s)/algorithm(s) most 
suitable for identification of environmental events by the 
cutaneous senses.

MATERIALS AND METHODS

Subjects
Nineteen volunteers with profound hearing impair-

ment (nine female/ten male) between 18 and 50 years of 
age participated. No subject had a hearing threshold bet-

ter than 65, 70, 70, or 70 dB hearing level at the frequen-
cies 250, 500, 750, and 1,000 Hz, respectively, and at 
higher frequencies, none had any hearing within the lim-
its of the audiometer. Thirteen of the subjects were born 
with profound hearing impairment, six had become pro-
foundly hearing impaired as children or teenagers, and all 
had sign language as their first language. The subjects 
were profoundly hearing impaired and did not hear the 
sounds produced by the vibrator. Therefore, we did not 
need to mask their hearing and possible problems associ-
ated with incomplete masking were avoided. The sub-
jects had different experiences of using vibrations for 
observing environmental events, e.g., intentionally observ-
ing vibrations in a table or in the floor. The subjects were all 
members of the network “Dovas” (www.dovas.se); lived in 
Örebro, Sweden; and had introduced themselves as deaf 
on their home pages.

Test Sounds
The test sounds used in the present experiment were 

the same 45 environmental sounds (Table 1) used in pre-
vious experiments by Ranjbar et al. [31]. The sounds 
were selected by people with both normal hearing and 
dual sensory impairment who classified the events caus-
ing the sounds as the most important to be informed 
about (described in more detail in Borg et al. [1] and Ranj-
bar et al. [31]).

The acoustic analysis showed that, for most of the 
sounds, the dominating spectral components were below 
2,000 Hz, though some had important components up to 
8,000 Hz. The temporal characteristics of the sounds 
were analyzed with the Soundswell Signal Workstation 
(Saven Hitech AB; Stockholm, Sweden). Spectral analy-
sis of the envelope showed that most of the temporal 
information was in the range below about 10 Hz for the 
vast majority of sounds (90%).

Equipment
The algorithms were implemented in MATLAB, ver-

sion 7.0.4 (The MathWorks, Inc; Natick, Massachusetts). 
The sounds were played by a computer (Pentium® 4, 
1.70 GHz, 256 MB RAM) and presented using a wide-
band vibrator (Brüel & Kjær shaker type 4810 [Nærum, 
Denmark], weighing 1.1 kg). The vibrator was placed on 
a solid stand on the floor to keep it stable (Figure 1). An 
accelerometer (charge accelerometer, Brüel & Kjær type 
4371) was placed on the membrane of the vibrator to 
measure the acceleration of the vibrations (which was 

http://www.dovas.se
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recalculated automatically to amplitude in micrometers 
by integrating twice). Finally, the accelerometer was con-
nected to a 100 mm-long rod of only 1 mm diameter (to 
keep the weight low). The rod was surrounded by a metal 
tube (15 mm diameter) for protection. At the end of the 
rod, a cap with an area of 0.32 cm2 was mounted, and this 
cap made contact with the subject’s skin. The amplitude 

values measured by the accelerometer were displayed by 
vibration exciter control (Brüel & Kjær type 1050).

Signal-Processing Algorithms
Eight basic algorithms were developed to process

the environmental sounds based on three principles:
(1) transposing (transposing frequency components with 
highest amplitude [range 100–8,000 Hz to range 30–800 Hz]
[TRHA]; transferring the sum of complex frequency 
components within every 1/3 octave [range 100–8,000 Hz
to range 200–800 Hz] [TR1/3]; and transposing fre-
quency range 1,200–2,400 Hz to 100–700 Hz [TR]),
(2) modulating (amplitude modulation [250 Hz carrier 
wave] [AM]; amplitude and frequency modulation [250 Hz
carrier wave] [AMFM]; and amplitude modulation with 
multiple channels [AMMC]), and (3) filtering (filtering 
using threshold of vibratory sense [equalizing] [EQ]) 
(Table 2). In addition, the NP algorithm (in which the 
sounds were presented in their original form) was used as 
a reference.

The TRHA, TR1/3, TR, AMFM, and AMMC algo-
rithms were also tested in combination with the EQ

Table 1.
Sound number and label of environmental event (sound) used in experiments.
Sound No. Environmental Sound Sound No. Environmental Sound Sound No. Environmental Sound

1 Doorbell 16 Two Men Talking 31 Noise from Breeze
2 Stream Murmur 17 Telephone Signalling 

Several Times
32 Spectator Excitement

3 Dripping Water 18 Door Opening and 
Closing

33 House Alarm

4 Heavy Traffic 19 Frying Bacon 34 Copier
5 Car Signalling Several 

Times
20 Water Running 35 Restaurant Buzz

6 Barking Dog 21 Coffee Maker 36 Keyboard
7 Wave 22 Washing Machine 37 Cutting Wood
8 People Laughing 23 Vacuum Cleaner 38 Cat Meowing
9 Bird Song 24 Toilet Flushing Twice 39 Signal at Crossing

10 Thunder Followed by 
Rain

25 Rain on Window 40 Hammer Blow

11 Train that Slows Down 
and Drives Past

26 Boiling Water 41 Opening Champagne 
Twice

12 Person Sneezing 27 Tractor Comes, Stops, 
and Idles

42 Riding Horse

13 Motorcycle Passing 28 Cry from Loudspeaker 43 Hiccup
14 Bicycle Bell 29 Person Walking on 

Gravel
44 Cow Mooing

15 Signal from Ice Cream 
Truck

30 Cutlery Clatter 45 Helicopter

Figure 1.
Schematic figure of vibrator system from (a) side and (b) top (contact 
surface). Vibrator was Brüel & Kjær shaker type 4810 (Nærum, 
Denmark), and accelerometer was charge accelerometer Brüel & Kjær 
type 4371.
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algorithm, which was used for equalizing (adapting) with 
respect to the vibratory thresholds of the skin [22]. The 
AM algorithm was not tested after adaptation to the skin 
because the output was dominated by one frequency (250 
Hz), which would be practically the same after adapta-
tion. The AM algorithm was tested twice: test and retest. 
In total, 14 test sequences (TRHA, TR1/3, TR, AMFM, 
AMMC, EQ, NP, AM test, AM retest, TRHA + EQ,
TR1/3 + EQ, TR + EQ, AMFM + EQ, and AMMC + EQ) 
were evaluated. For a detailed description of the algo-
rithms, see Ranjbar et al. [31].

The TRHA, TR, AM, AMFM, and AMMC algo-
rithms were the same as those used in the previous study 
in which the processed sounds were identified auditorily 
[31]. The TR1/3 algorithm was modified to make use of a 
wider range of the vibratory sensitivity of the skin than 
the frequency range used in the previous study [31].

The original sounds were sampled at a sampling fre-
quency (FS) of 16,000 Hz, with an antialiasing filter just 
below 8,000 Hz. After signal processing, we down-
sampled the sounds to 2,000 Hz using a decimate function
that filtered the data with an eighth-order, Chebyshev 
Type I, low-pass filter, with a cutoff frequency of 800 Hz.

TRHA Algorithm
We transposed the important acoustic information in 

the frequency range 100 to 8,000 Hz to the “sensitive” 
frequency range 30 to 800 Hz by transposing the 24 fre-
quency components with the highest energy using a Fou-
rier transform-based method. The algorithm was the 
same as that used in the previous study [31]. Good tem-

poral information was maintained because no low-pass 
filtering was used.

TR1/3 Algorithm
We transposed the frequency components within the 

range 150 to 300 Hz (containing the fundamental fre-
quency of speech, f0) to the frequency range 50 to 200 Hz 
(Figure 2). Further, we fed the input signal to a filter 
bank consisting of 13 third-order Butterworth band-pass 
filters (18 dB/octave). The pass-bands (3 dB cutoff) were 
300 to 400; 400 to 500; 500 to 600; 600 to 800; 800 to 
1,000; 1,000 to 1,200; 1,200 to 1,600; 1,600 to 2,000; 
2,000 to 2,400; 2,400 to 3,200; 3,200 to 4,000; 4,000 to 
5,300; and 5,300 to 6,600 Hz. The outputs from the filters 
were rectified and low-pass filtered (third-order Butter-
worth, cutoff frequency 10 Hz, 18 dB/octave), thus an 
envelope signal for each pass-band was obtained. We then
used these 13 signals to amplitude-modulate 13 carrier 
waves: frequencies 307, 353, 379, 419, 431, 461, 509, 
557, 577, 593, 631, 673, and 701 Hz. Further, we fre-
quency-modulated the carriers (deviation typically ±50% of 
the carrier frequency) by independent uniformly distrib-
uted noise to avoid interference effects. We obtained the 
total output by adding the transposed signal (50–200 Hz) 
and the 13 modulated signals just described. This algo-
rithm can be regarded as both modulating and transpos-
ing, though transposition dominates.

TR Algorithm
We transferred the frequencies within the range 1,200 to

2,400 Hz containing the most important acoustic infor-
mation for identification of environmental sounds [32] to 

Table 2.
Eight algorithms used to signal-process 45 environmental sounds. Versions of algorithms TRHA, TR1/3, TR, AMFM, and AMMC existed in 
which, in second version, sounds were also adapted (basic + EQ) to vibratory thresholds of skin. Algorithm AM was tested twice.

Algorithm Description

TRHA Transposing frequency components with highest amplitude in range 100–8,000 Hz to range 30–800 Hz (two 
versions: basic + adapted).

TR1/3 Transferring sum of complex frequency components within every 1/3 octave in range 100–8,000 Hz to range 
200–800 Hz (two versions: basic + adapted).

TR Transposing frequency range 1,200–2,400 Hz to 100–700 Hz (two versions: basic + adapted).

AM Amplitude modulation of 250 Hz carrier wave (tested twice: test + retest).

AMFM Amplitude and frequency modulation of 250 Hz carrier wave (two versions: basic + adapted).

AMMC Amplitude modulation with multiple channels (two versions: basic + adapted).

EQ Filtering using threshold of vibratory sense (equalizing).

NP No processing (i.e., original sounds).
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a low-frequency hearing range with the best sensitivity 
for the skin [8]. Using a Fourier transform method, we 

transposed the frequencies within the range 1,200 to 
2,400 Hz to the frequency range 100 to 700 Hz after first 
adding the complex frequency components in pairs, 
thereby decreasing the number of frequencies by one-
half. We removed the spectral components outside the 
frequency range 1,200 to 2,400 Hz. No temporal infor-
mation was removed through low-pass filtering of the 
envelope.

AM Algorithm
We transferred the temporal pattern of the environ-

mental sound that contained important information for 
auditory identification [32] to a low frequency range by 
amplitude-modulating a sine signal (250 Hz) with the 
envelope of the input signal. We extracted the envelope 
of the input signal by first rectifying the waveform and 
then filtering with a three-pole, low-pass Butterworth fil-
ter (18 dB/octave) at a cutoff frequency of 10 Hz. We 
chose the frequency 250 Hz because it is in the range of 
the lowest vibration threshold [22].

AMFM Algorithm
We both amplitude- and frequency-modulated the 

environmental sounds with the purpose of transferring 
the temporal and spectral information of the sounds to the 
low-frequency range. The idea was based on the study by 
Gygi et al. [32], which showed that the frequency compo-
sition and amplitude variations of the sound both carry 
important information [32]. First, we extracted the enve-
lope of the input signal by rectifying and then low-pass 
filtering at 10 Hz, as in the AM algorithm. Thereafter, we 
frequency-modulated a 250 Hz carrier signal by the 
derivative (it enhances the time variations, especially 
transients) of the envelope. Finally, we amplitude-
modulated the resulting frequency-modulated carrier
signal by the envelope.

AMMC Algorithm
We first filtered the input signal using six third-order 

Butterworth band-pass filters with different pass-bands: 
120 to 240; 240 to 480; 480 to 960; 960 to 1,920; 1,920 to 
3,840; and 3,840 to 6,000 Hz. Thereafter, we extracted 
the envelope of the output signal from each filter by recti-
fying and low-pass filtering (at 10 Hz) the output signal. 
We used the envelope of the output signal to amplitude-
modulate the six sine signals with frequencies 55, 105, 
215, 335, 445, and 650 Hz. We added the six modulated 
signals to produce the final output signal.

Figure 2.
Transferring sum of complex frequency components within every 1/3 
octave (TR1/3) algorithm: Frequency components within range 150–
300 Hz are transposed to range 50–200 Hz. Further, input signal (x(n)) 
is fed to filters with pass-bands 300–400; 400–500; 500–600; 600–
800; 800–1,000; 1,000–1,200; 1,200–1,600; 1,600–2,000; 2,000–
2,400; 2,400–3,200; 3,200–4,000; 4,000–5,300; and 5,300–6,600 Hz. 
The 13 output signals from the filters are used to amplitude-modulate 
13 carrier waves (307, 353, 379, 419, 431, 461, 509, 557, 577, 593, 
631, 673, and 701 Hz). Total output, y(n), is obtained by adding 
transposed signal and 13 modulated signals.
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EQ Algorithm
We adapted the input signal to the vibratory threshold 

of the skin using the approximate values described in the 
study by Verrillo [22] and our results in Figure 3. Our 
purpose was to equalize the sound spectrum and to widen 
the available frequency range of the cutaneous presenta-
tion. We amplified the sound spectrum below 80 Hz and 
above 500 Hz, but in the region 100 to 500 Hz, we attenu-
ated it. We removed the high-frequency components 
above 1,000 Hz. We tested the eight basic algorithms 
individually; five of them (TRHA, TR1/3, TR, AMFM, 
and AMMC) were also tested in conjunction with EQ 
(adapted, i.e., basic + EQ).

NP Algorithm
For the NP algorithm, the test sounds were not pro-

cessed (i.e., the original sounds were used). The purpose 
of the NP algorithm was to provide a reference to deter-
mine whether processing the environmental sounds was 
advantageous. The presented sounds had a sampling fre-
quency of 16,000 Hz, and the only possible filtering was 
that caused by skin and receptor properties [8,22]. The 
amplitude of the signal-processed signal for all algo-
rithms was adjusted to the same level as the original (natu-
ral) sound.

The TRHA, TR1/3, AM, AMFM, AMMC, and NP 
algorithms covered the whole spectrum of the original 
sound, while the TR and EQ algorithms covered the 
spectrum between 1,200 to 2,400 Hz and 0 to 1,000 Hz, 
respectively.

The output signal for the EQ and NP algorithms had 
the largest bandwidth, after which (in order of decreasing 
frequency bandwidth) came the TRHA, TR1/3, TR, 
AMMC, and AMFM algorithms, and the AM algorithm 
contained only one frequency with small side bands.

Procedure
The subjects were seated in a relaxed manner in a 

quiet room. They kept the thenar eminence of their domi-
nant hand in a fixed position on a table on which the 
vibrator surface was placed and sensed the presented 
vibrations. The contact surface was at the same level as 
the table surface on which the hand rested in order to 
minimize pressure on the vibrator. The subjects could not 
see the computer screen or the test leader.

Vibratory Thresholds
We measured the subjects’ vibratory thresholds at the 

frequencies 25, 40, 80, 150, 250, 350, 450, 700, and 
1,000 Hz using the ascending and descending method 
[33]. For each frequency, we presented pulses of 1,300 
ms total duration (150 ms rise and fall time, 1,000 ms 
steady time). The subjects were instructed to signal per-
ceived vibration by pressing a button when they were 
certain they felt the signal. The experiment was repeated 
twice, in a practice and a test phase. The average vibra-
tion threshold values of the 19 test subjects are shown in 
Figure 3. The values in both practice and test were in fair 
agreement with those found in the study by Verrillo [22]. 
For example, detection of a vibrotactile stimulus at 80 Hz 
required an approximately 20 dB stronger stimuli than 
detection of a vibrotactile stimulus at 250 Hz.

Testing Algorithms
When testing the algorithms, we seated the subjects 

in the same room and under the same conditions as when 
we measured their vibratory thresholds. The subjects 
adjusted the signal amplitude to a comfortable level, once 
for each algorithm, when the test started. When the EQ 
and NP algorithms and the adapted versions (basic + EQ) 
of the basic algorithms TRHA, TR1/3, TR, AMFM, and 
AMMC were tested, the subjects changed the amplitude 
of the vibrations several times (<5 times), during the tests 
(e.g., when testing “bird song,” “bicycle bell,” or “house 
alarm”). The level of the processed signal was to some 
extent an identification cue (e.g., the sound “spectator 

Figure 3.
Average vibratory threshold of 19 subjects measured at frequencies 
25, 40, 80, 150, 250, 350, 450, 700, and 1,000 Hz at thenar eminence, 
mean ± standard deviation, n = 19.
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excitement” was stronger than the sound “motorcycle 
passing”).

For each presented sound in each algorithm, the sub-
jects had 10 response alternatives, of which 1 was correct 
and the other 9 were randomly selected from the 45 sounds.
The order of the 14 presented sequences (8 basic algo-
rithms, 5 adapted, and 1 retest) was random for each sub-
ject. The order of the presented sounds was random for 
each test sequence but constant across subjects; i.e., a 
certain algorithm was always tested with the same set of 
45 × 10 sounds (45 presented × 10 response alternatives).

The subjects sensed the vibrations presented and 
indicated the sound (one of the 10 response alternatives) 
the vibration represented. The sounds were presented up 
to five times if the subject required repetitions, and sub-
jects were allowed to take as much time as they needed to 
identify the environmental sounds. The same procedure 
was applied to all 14 sequences. The experiment took up 
to 9 hours and could be performed over 2 or 3 days. The 
subjects could choose to take a break between each test 
sequence. The AM algorithm was tested twice (test and 
retest) in random order among the other algorithms, 
though the subjects were not aware that AM was tested 
twice.

Each subject identified 630 signals in total (13 algo-
rithms + 1 retest  45 sounds) without any feedback. The 
project was approved by the Regional Ethics Committee 
in Uppsala, Sweden, Reg. No. 2006:AÄ16.

Assessment
A correct response resulted in 1 point, and an incor-

rect response resulted in 0 points. Thus, the maximum 
number of points was 45 (100% identification score) for 
the total of 45 events.

Statistical Methods
We calculated median and mean values to evaluate 

systematic errors and result trends.
We used intraclass correlation coefficients (ICCs) 

and the Spearman test for test-retest analysis [34–35]. 
The Spearman test also defined the correlation between 
identification scores and vibratory thresholds.

We used the Friedman test [36] and the Wilcoxon 
signed rank test with asymptotic two-tailed significance 
and Bonferroni correction [34] for description and com-
parison of the algorithms.

We used repeated measures analysis of variance 
(RM-ANOVA) to evaluate the effect of the factors sub-
ject and algorithm. To test for violation of sphericity, we 

used Mauchly’s test of sphericity. We used the Hyyanh-
Feldt correction if sphericity could not be assumed [37].

RESULTS

The results of vibratory identification of the 45 envi-
ronmental sounds processed by the different algorithms 
and identified by 19 subjects determined the percentage 
scores for each participant and each algorithm. The iden-
tification results for sounds processed using the adapted 
versions of the TRHA, TR1/3, TR, AMFM, and AMMC 
algorithms showed that the corresponding basic algo-
rithms had better scores than their adapted versions, and 
the difference was significant (p < 0.007, Wilcoxon 
signed rank test) for the TR1/3 and AMFM algorithms. 
Therefore, in the present article, only the results for the 
basic algorithms will be presented in detail.

Test-Retest
The median value of identification scores for the AM 

algorithm, both in test and retest, was 42 percent, while 
the mean value (± standard error of the mean [SEM]) for 
AM was 41.5 ± 2.9 percent in test and 42.2 ± 3.5 percent 
in retest. The results showed no significant difference (p =
0.70, Wilcoxon signed rank test) between the mean iden-
tification scores. The mean (± 95% confidence interval) 
of the absolute value of the difference between identifica-
tion scores at test and retest was 8 ± 3 percentage units. 
The correlation between test-retest values for the AM 
algorithm was  = 0.71 (p < 0.01, Spearman). The ICC 
between test-retest was 0.71 (p < 0.01, one-way random).

Subject and Algorithm
Subject was a significant factor (RM-ANOVA,

F(18, 126) = 27.2, p < 0.001) affecting the identification 
scores (regardless of assumption of sphericity). We noted 
a significant effect of the factor algorithm (RM-ANOVA, 
F(7, 126) = 6.34, p < 0.001) for the eight basic algorithms.

The algorithms were also grouped into four groups 
(corresponding to the design principles): transposing 
(mean value of identification scores of TRHA, TR1/3, 
and TR), modulating (mean of AM, AMFM, and 
AMMC), filtering (EQ), and NP. The modulating algo-
rithms had better results than did the filtering algorithms 
(p < 0.05, Wilcoxon signed rank test). RM-ANOVA 
showed a significant effect of the factor group (F(3, 54) = 
4.779, p < 0.01) for the four groups.
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Vibratory identification of the 45 environmental 
sounds processed by the 8 basic algorithms and identified 
by 19, subjects is shown in Figure 4. Figure 4(a) shows 
the percentage identification score for each subject and 
algorithm. Most subjects had a similar pattern (heavy 
lines) and scored above the chance level (10%), but the 
curves are shifted more or less in parallel, for example, 
subjects 1, 2, 4, 6, 7, and 17. Some subjects also had a 
different pattern at the chance level, particularly subject 

19, who showed signs of low motivation during the test 
and lack of concentration and had a low identification 
score. The correlation between the individual vibration 
threshold and identification score was not significant ( = 
–0.14, p = 0.58, Spearman).

Figure 4(b) shows the mean ± SEM value of the 
identification scores of different subjects, and Figure 4(c)
shows the mean ± SEM value of the identification scores 
of the different basic algorithms. As seen in the figures, 

Figure 4. 
(a) Vibratory identification of 45 environmental sounds processed by 8 different algorithms and identified by 19 subjects. Heavy lines indicate 6 
typical subjects and 1 “different” subject. (b) Mean ± standard error of the mean (SEM) value of vibratory identification scores of different 
subjects. (c) Mean ± SEM value of vibratory identification of different algorithms. AM = amplitude modulation (algorithm), AMFM = amplitude 
and frequency modulation (algorithm), AMMC = amplitude modulation with multiple channels (algorithm), EQ = equalizing (algorithm), NP = 
no processing (algorithm), S = subject, TR = transposing frequency range (algorithm), TR1/3 = transferring sum of complex frequency 
components within every 1/3 octave (algorithm), TRHA = transposing frequency components with highest amplitude (algorithm). 
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we noted a greater difference between the results for dif-
ferent subjects (Figure 4(b)) than between the different 
algorithms (Figure 4(c)). For example, the results of
different subjects for the TRHA algorithm varied 
between 16 and 67 percent correct (51 percentage units 
difference), while the results of subject 13 (one of the 
subjects with the largest difference) varied between 19 
and 34 percent (15 percentage units difference) for the 
different algorithms.

Of the total 19 subjects, 2 had the TRHA algorithm 
as their best, 2 had the TR1/3, 1 had the TR, 1 had the 
AM, 6 had the AMFM, 3 had the AMMC, 1 had the EQ, 
and 1 had the NP.

The AMFM algorithm had the largest total scatter-
ing between subjects (64 percentage units) (maximum 
score minus minimum score), followed by the AMMC 
(56 percentage units), TRHA (51 percentage units), NP 
(49 percentage units), AM (47 percentage units), TR
(42 percentage units), and TR1/3 (36 percentage units) 
algorithms, and lastly, the EQ algorithm had the smallest 
scattering (36 percentage units).

The median value was highest for the TRHA and 
AMFM (44%) algorithms, followed by the TR1/3, AM, 
and AMMC (42%); NP (38%); and TR (35%) algo-
rithms; the EQ algorithm was lowest (33%). The mean 
value was highest for the AMFM (47%) algorithm, fol-
lowed by the TRHA (44%), AMMC (44%), AM (42%), 
TR1/3(41%), and NP and TR (38%) algorithms; the EQ 
algorithm was lowest (36%).

We used the Wilcoxon signed rank test with asymp-
totic significance (two-tailed) to compare and define the 
significance of possible differences between the algo-
rithms [34]. Accordingly, the AMFM algorithm had the 
highest mean score (across subjects) for vibratory identi-
fication, followed by the TRHA, AMMC, AM, TR1/3, 
NP, and TR algorithms; lastly, the EQ algorithm had the 
lowest identification score. The TRHA and AMMC algo-
rithms showed better results (p < 0.05, Wilcoxon signed 
rank test) than did the TR, EQ, and NP algorithms. The 
AMFM algorithm had a better (p < 0.05, Wilcoxon 
signed rank test) identification score than did the TR1/3, 
TR, AM, EQ, and NP algorithms. The TR1/3 and AM 
algorithms showed better (p < 0.05, Wilcoxon signed 
rank test) results than did the EQ algorithm.

The AMFM algorithm showed better results (p < 
0.05, Wilcoxon signed rank test) than did the TR, EQ, 
and NP algorithms after Bonferroni correction. The 

TRHA algorithm had a better (p < 0.05, Wilcoxon signed 
rank test) identification score than did the EQ algorithm.

We also ranked the algorithms using the Friedman 
test, which resulted in the same ranking order as with the 
Wilcoxon signed rank test. According to the Friedman 
test, the AMFM algorithm showed better results (p < 
0.05, Friedman) than did the TR and EQ algorithms, and 
the TRHA algorithm had a better (p < 0.05, Friedman) 
identification score than did the EQ algorithm.

In summary, adaptation to vibratory sensitivity 
threshold did not improve the identification scores. The 
test and retest results did not differ (p = 0.7). Individual 
variability was large, but no correlations were found 
between vibration thresholds and identification scores. 
Subject and algorithm were significant factors (RM-
ANOVA, p < 0.001), but the differences between the 
algorithms were relatively small. The TRHA, AMFM, 
and AMMC algorithms had better (p < 0.05) scores than 
did the TR, EQ, and NP algorithms. The TR1/3 and AM 
algorithms showed better (p < 0.05) results than did the 
EQ algorithm.

DISCUSSION

Individual Variability
We found considerable individual variability in the 

results, and subject was a significant factor (Figure 4(b)).
The variability can be assumed to be due to person, as 
well as test-related conditions and random variations. 
Possible person-related factors are age at onset of hearing 
loss and earlier experience of use of vibrations for envi-
ronmental monitoring or communication. It is interesting 
to observe that we did not find any correlation between 
perceptual thresholds and identification scores. Other 
possible causes of variability are differences in sound 
alternatives for each presented sound for each algorithm, 
equipment stability, algorithm order (training effect), and 
levels of motivation and concentration.

The analysis of test-retest variability (AM algorithm) 
showed that no significant improvement existed at retest, 
and a relatively good correlation (ICC = 0.71, p < 0.01, 
one-way, random;  = 0.71, p < 0.01, Spearman) indi-
cated relatively good stability and reproducibility for the 
test conditions [35]. In contrast to auditory experiments 
in which subjects had heard the original sounds, in the 
present tactile experiments, some of the subjects were 
born with profound hearing impairment and had neither 
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heard the original sounds nor had any auditory memory 
of them. After two or three algorithms, the subjects 
became familiar with the signals and could respond more 
rapidly. Note that they did not receive any correct answer 
feedback.

Individual differences are common in perception 
studies and decrease after long-term training [38–40]. 
The sound alternatives could have been chosen differ-
ently. For example, the sounds could have been grouped 
in classes on the basis of contextual similarities, e.g., 
general home, kitchen, office, and outdoors, as in the 
study by Reed and Delhorne [40–41], and the subjects 
could have identified the sounds by choosing one from 
the same class. Contextual information, however, may 
also confuse the subject, as the same sound, e.g., “tele-
phone signaling,” can occur in several environments. In 
addition, contextual information would increase the prob-
ability of correct responses from guessing. Training 
effects would improve the results of subjects with low 
identification scores and thereby decrease individual 
variability.

Algorithms

Comparison of Algorithms
Algorithm was a significant factor (RM-ANOVA, p <

0.001), as was algorithm group (RM-ANOVA, p < 0.01). 
The transposing and modulating principles had better 
results than did the filtering principles and the EQ and 
NP algorithms. The low scores for EQ can partly be 
explained by the fact that the environmental sounds have 
a smaller part of their spectrum left after the frequency 
components higher than 1,000 Hz have been removed. 
This means that the environmental sounds that have their 
spectrum above 1,000 Hz, e.g., “bird song,” “bicycle 
bell,” and “house alarm,” are removed completely (the 
skin has a high vibratory threshold at frequencies above 
800 Hz) and that the energy of these high-frequency 
sounds must be transposed to the sensitive low-frequency 
range of the skin [31–32,42].

The transposing algorithms TRHA and TR1/3 
showed higher identification scores than did the TR algo-
rithm (transposing only 1,200–2,400 Hz), confirming the 
importance of the high-energy components [32] and of 
covering the whole original spectrum [32,42]. In the 
TRHA and TR1/3 algorithms, the frequency components 
that were transposed to the frequency range above 600 
Hz were probably difficult to perceive through the skin 

[8,22], which means that the TRHA and TR1/3 algo-
rithms are not optimal. One way to solve this problem in, 
for example, the TRHA algorithm, is to reduce the num-
ber of transposed frequency components from 24 to, for 
example, 12 or less and in the TR1/3 algorithm to reduce 
the number of filters in the bank (see subsection “Signal-
Processing Algorithms” in main “Materials and Methods”
p. 1025) from 13 to, for example, 6 and transpose only to 
the range below 600 Hz. Decreasing the number of fre-
quency components could also increase the frequency 
intervals (f > 30%), thereby improving the skin’s ability 
to separate the components.

Persons with profound hearing impairment would 
also benefit from using the TR1/3 and TRHA algorithms 
to improve their speechreading. The formants have the 
highest energy in speech [18] and will therefore be 
selected for transformation with the TRHA algorithm. 
The fundamental frequency for the female voice (f0: 150–
300 Hz) is retained with the TR1/3 algorithm but some-
what attenuated for the male voice (f0: 100–150 Hz).

The modulating AM (p < 0.05), AMFM (p > 0.05), 
and AMMC (p > 0.05) algorithms had a better result than 
did the NP algorithm, even when the test sounds domi-
nated by high frequencies (“bird song,” “bicycle bell,” 
and “house alarm,” which could not be perceived by any 
of the subjects) were excluded, which is compatible with 
the lower frequency resolution of the skin as compared 
with the auditory system [8]. The poor result for the NP 
algorithm, also after the test sounds dominated by high 
frequencies were excluded, indicates that the frequency 
components must not only be detectable but that the skin 
sensors must also be able to separate the components. 
When the NP algorithm was used, a great number of fre-
quency components were present, possibly masking each 
other [8].

The modulating AMFM algorithm used almost the 
same signal-processing method as the AM algorithm but 
achieved a higher identification score than AM did, 
which could be explained by the fact that the AMFM 
algorithm used a wider range of frequencies that the skin 
is capable of sensing than the AM algorithm did. In addi-
tion, the AMFM algorithm emphasizes the time varia-
tions, i.e., temporal information, more than the AM 
algorithm does (see “Materials and Methods” section,
p. 1024).

The AMMC algorithm had better scores than the TR, 
EQ, and NP algorithms did. The carrier frequencies 550 and
650 Hz of the AMMC algorithm were probably difficult 
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to separate. In order to improve this algorithm, we could 
choose the carrier waves differently, for example, by 
beginning at about 30 Hz and keeping frequency differ-
ences at a minimum of 30 percent (f  30% Hz).

To increase the temporal information of sounds pro-
cessed by the TR1/3, AM, AMFM, and AMMC algorithms,
we could extract the envelope of the output from the fil-
ters by filtering at about 50 Hz and not at 10 Hz as in the 
present study because the temporal resolution of the skin 
is maximal at 20 to 40 Hz [8,30]. The choice of 10 Hz 
was based on the fact that most (90%) of the temporal 
information was below about 10 Hz for the vast majority 
of sounds, as well as on the study by Gygi et al. [32].

An alternative design for a vibratory aid using the 
AMMC and TR1/3 algorithms could be to feed the signal-
processed sounds from each filter bank to separate vibra-
tors, as in the Tactaid II and VII. In this way, spatial sepa-
ration would compensate for the low frequency resolution
of the skin [8]. Such an extension would, however, 
increase the size of the aid, add cables, and require a 
large battery supply. The advantages of the current vibra-
tory aid compared with the Tactaid II and VII are its signal-
processing method, which is designed for environmental 
sounds and not for speech, as well as its potentially 
smaller size.

Adapting to Vibratory Thresholds
The EQ and the adapted version of the algorithms 

had low identification scores. The sounds that had their 
most important spectrum information between 100 and 
500 Hz were attenuated by the EQ algorithm and thus 
more difficult to sense. Attenuation may be one of the 
reasons for the lower identification scores of the adapted 
algorithms. A better alternative might have been to use 
the subjects’ own vibratory thresholds. Using the per-
sonal vibratory threshold, we could have fixed the ampli-
tude setting of the vibrator and the subjects would not 
have needed to adjust it. Frequent adjustments, as in the 
EQ, NP, and adapted versions of the algorithms, may 
negatively affect the quality of the signal; for example, 
the signal could be too weak to sense or be overloaded, 
which disrupts the temporal pattern. Fixed amplitude will be
used in experiments in a forthcoming field study, in which
the subjects will be few and will use their individually 
adapted (EQ) prototype of the portable monitoring aid.

Comparison with Existing Speech Processing Methods
The AM, TR1/3, and AMMC algorithms are similar 

to methods used in the speech processing vibratory aids 

MiniVib4 and TAM [8], the vibratory aid developed by 
Ling [43], and the vibratory aid Tactaid VII, respectively. 
However, comparing the results of the current study and 
other studies is difficult, as the test conditions and test 
sounds were different. No vibratory aids were found that 
use algorithms similar to the TRHA, TR, AMFM, EQ, or 
NP algorithms.

Tactaid VII was used to identify environmental 
sounds through vibrations [40] in a situation in which the 
subjects also had contextual information. After sufficient 
training with correct answer feedback, the subjects’ per-
formance varied between 40 and 80 percent correct, 
which is at about the same level as the present results, 
though our subjects did not receive any training or con-
textual information. The TRHA, TR1/3, and AMMC 
algorithms would also work for speech, because they 
retain information about the f0, have relatively good tem-
poral coding, and include more than five frequency chan-
nels, which is necessary to achieve a high level of speech 
understanding through the hearing sense [44]. The tem-
poral information in the TR1/3 and AMMC algorithms 
could be improved by low-pass filtering the envelope 
used to amplitude modulate at, for example, 50 Hz (rather 
than 10 Hz; “Materials Methods” section, p. 1024).

Vibratory Versus Acoustic Identification
We can compare the identification results of the 

TRHA, TR, AM, AMFM, AMMC, and EQ algorithms 
because they are the same in the present and previous 
studies [31].* However, the subjects differ, which limits 
the validity of the comparisons.

The rank order of algorithms in the vibratory tests 
differed from that in the hearing tests. In the vibratory 
tests, algorithms based on the filtering principle had the 
lowest rank order and modulating algorithms the highest, 
in contrast to the auditory tests in which the filtering 
algorithms had the highest rank order and the modulating 
algorithms the lowest.*

The AMFM algorithm had the highest rank order in 
vibratory identifications but the lowest rank order in 
auditory identifications of environmental sounds in the 
previous study [31].*

The differences in rank order of the algorithms in the 
vibratory and auditory tests can partly be explained by 

*Ranjbar P, Neovius L. Perceptual and acoustical classification of 
environmental sounds. 2009; Unpublished observations.
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the fact that the frequency discrimination/resolution and 
temporal resolution of the vibratory sense are inferior to 
those of the hearing sense [8].

The frequency discrimination of the hearing sense is 
approximately 100 times (f skin/f auditory system,
30/0.3 = 100) better than that of the skin. The correspond-
ing relationship for intensity discrimination is approxi-
mately two times better (I skin/I auditory system,
0.7/0.3  2), and for temporal resolution three times better
(time difference [t] skin/t auditory system, 10/3  3).

The finding that the auditory system has a higher 
rank order for algorithms with good spectral information 
while the skin has a higher rank order for algorithms with 
good temporal identification is compatible with the basic 
differences between the two systems.

The transposing algorithm TRHA had a relatively 
high rank order in both the vibratory and the auditory 
tests [31], confirming the importance of frequency com-
ponents with high energy. The good results with the 
TRHA algorithm also show the importance of temporal 
information because the envelope was not low-pass fil-
tered at 10 Hz, and they also show the benefit of fre-
quency transposition [32]. To increase the temporal 
information of the AM, AMFM, and AMMC algorithms, 
we could low-pass filter the sounds up to ~100 Hz 
instead of 10 Hz because gap detection is approximately 
10 ms for the skin. In conclusion, our findings on envi-
ronmental sounds are in-line with the basic psychophysi-
cal data on the hearing versus the cutaneous senses.

Application in Aids for Subjects with Dual Sensory 
Impairment

The present study is part of a series of studies 
describing the development of a technical aid for detec-
tion, localization, and identification of environmental 
sounds. The purpose is to help persons with dual sensory 
impairment monitor environmental events using the skin 
senses. A prototype for localization has been developed 
previously [45–46]. The identification aspect, in which 
the sounds must be processed by an algorithm, is the 
focus of the present study. Five algorithms—TRHA, 
TR1/3, AM, AMFM, and AMMC—covered the entire 
spectrum of the environmental sounds and gave high 
identification scores. Therefore, they are good candidates 
for use in a vibratory aid and can be chosen for testing in 
future experiments performed under more realistic condi-
tions. These algorithms have no obvious shortcomings, 
such as attenuating or partly removing important fre-

quency components (as do the TR, EQ, and NP algo-
rithms) and will be tested further both with and without 
adaptation to the skin (using better adapting algorithms). 
In future experiments, we will continue to use transpos-
ing and modulating principles. The TRHA and TR1/3 
algorithms will be modified by decreasing the number of 
transposed signals and using a 30 percent interval 
between main frequency components. The TR1/3, AM, 
AMFM, and AMMC algorithms will be modified by 
extracting the envelope of the sounds by low-pass filter-
ing at a higher frequency, for example, 50 Hz.

CONCLUSIONS
The transposing (algorithms TRHA and TR1/3) and 

modulating (algorithms AM, AMFM, and AMMC) prin-
ciples were suitable for further application in a portable 
vibratory aid for people with dual sensory impairment. 
Algorithm and subject were significant factors affecting 
the identification results. The TRHA, AMFM, and 
AMMC algorithms were significantly better than the NP 
algorithm.
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